The Energetics of Computing in Life and Machines (inbunden)
Fler böcker inom
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
500
Utgivningsdatum
2019-06-21
Förlag
Santa Fe Institute Press
Medarbetare
Kempes, Chris / Stadler, Peter F.
Illustrationer
Black & white illustrations
Dimensioner
229 x 152 x 32 mm
Vikt
885 g
Antal komponenter
1
Komponenter
411:B&W 6 x 9 in or 229 x 152 mm Gray Cloth w/Jacket on Creme w/Matte Lam
ISBN
9781947864184

The Energetics of Computing in Life and Machines

Inbunden,  Engelska, 2019-06-21
362
  • Skickas från oss inom 7-10 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Why do computers use so much energy? What are the fundamental physical laws governing the relationship between the precise computation run by a system, whether artificial or natural, and how much energy that computation requires? Can we learn how to improve efficiency in computing by examining how biological computers manage to be so efficient? The time is ripe for a new synthesis of nonequilibrium physics, computer science, and biochemistry.

This volume integrates pure and applied concepts from these diverse fields, with the goal of cultivating a modern, nonequilibrium thermodynamics of computation.
Visa hela texten

Passar bra ihop

  1. The Energetics of Computing in Life and Machines
  2. +
  3. A City on Mars

De som köpt den här boken har ofta också köpt A City on Mars av Dr Kelly Weinersmith, Zach Weinersmith (inbunden).

Köp båda 2 för 630 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Innehållsförteckning

prefaceChris Kempes, David H. Wolpert, Peter F. Stadler, and Joshua A. Grochow 

1: overview of information theory, computer science theory, and stochastic thermodynamics of computation, David H. Wolpert

2: a compositional chemical architecture for asynchronous computation, Blake S. Pollard 

3: information processing in chemical systems, Jakob L. Andersen, Christoph Flamm, Daniel Merkle, and Peter F. Stadler

4: native chemical automata and the thermodynamic interpretation of their experimental accept/reject responses, Marta Dueñas-Díez and Juan Pérez-Mercader

5: intergenerational cellular signal transfer and erasure, GW C. McElfresh and J. Christian J. Ray

6: protocell cycles as thermodynamic cycles, Bernat Corominas-Murtra, Harold Fellermann, and Ricard Solé

7: how and what does a biological system compute? Sonja J. Prohaska, Peter F. Stadler, and Manfred Laubichler

8: toward space- and energy-efficient computations, Anne Condon and Chris Thachuk

9: beyond number of bit erasures: computer science theory of the thermodynamics of computation, Joshua A. Grochow and David H. Wolpert

10: automatically reducing energy consumption of software, Jeremy Lacomis, Jonathan Dorn, Westley Weimer, and Stephanie Forrest

11: trade-offs between cost and precision and their possible impact on aging, Hildegard Meyer-Ortmanns

12: the power of being explicit: demystifying work, heat, and free energy in the physics of computation, Thomas E. Ouldridge, Rory A. Brittain, and Pieter Rein ten Wolde

13: transforming metastable memories: the nonequilibrium thermodynamics of computation, Paul M. Riechers 

14: physical limitations of work extraction from temporal correlations, Elan Stopnitzky, Susanne Still, Thomas E. Ouldridge, and Lee Altenberg

15: detailed fluctuation theorems: a unifying perspective, Riccardo Rao and Massimiliano Esposito